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ABSTRACT: This paper describes an immersed boundary method (IBM) that facilitates the ex-
plicit resolution of complex terrain within the Weather Research and Forecasting (WRF) model. 
Two different interpolation methods, trilinear and inverse distance weighting, are used at the 
core of the IBM algorithm. Functional aspects of the algorithm’s implementation and the accura-
cy of results are considered. Simulations of flow over a three-dimensional hill with shallow ter-
rain slopes are preformed with both WRF’s native terrain-following coordinate and with both IB 
methods. Comparisons of flow fields from the three simulations show excellent agreement, indi-
cating that both IB methods produce accurate results. However, when ease of implementation is 
considered, inverse distance weighting is superior. Furthermore, inverse distance weighting is 
shown to be more adept at handling highly complex urban terrain, where the trilinear interpola-
tion algorithm breaks down. This capability is demonstrated by using the inverse distance 
weighting core of the IBM to model atmospheric flow in downtown Oklahoma City. 

1 INTRODUCTION 

Computational fluid dynamics codes are used at the microscale to predict atmospheric boundary 
layer flows over complex terrain for a variety of applications, ranging from the siting of wind 
turbines to predictions of flow in urban terrain for contaminant dispersion. Mesoscale numerical 
weather prediction models are being increasingly used at higher resolutions, tending towards the 
microscale, but face several inherent limitations which prevent accurate simulations in complex 
terrain at this scale. One limitation is the use of terrain-following coordinates in most mesoscale 
models. This coordinate accommodates complex terrain by transforming the physical domain 
onto a Cartesian grid, thereby simplifying the application of lower boundary conditions. The 
transformation introduces metric terms into the governing equations, which when discretized, in-
troduce additional truncation errors. These coordinate transformation errors significantly degrade 
the quality of the solution in steep terrain, as demonstrated by previous researchers (Janjic 1977; 
Klemp et. al. 2003; Zängl 2004). 

To improve the prediction of atmospheric flows in complex terrain, we have implemented an 
immersed boundary method (IBM) in the mesoscale Weather Research and Forecasting (WRF) 
model. IBM is a gridding technique, which allows complex terrain to be modeled without a 
coordinate transformation, therefore eliminating restrictions on terrain slope and the errors asso-
ciated with coordinate mapping. With the IBM, coordinate surfaces pass through the terrain, and 
boundary conditions are applied within the interior of the computational domain through the ad-
dition of a forcing term in the governing equations. Our IBM handles both Dirichlet and Neu-
mann boundary conditions. Additionally, realistic surface forcing can be provided at the im-
mersed boundary by atmospheric physics parameterizations, which are modified to include the 
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effects of the immersed terrain. A version of our IBM suitable for two-dimensional terrain is pre-
sented in Lundquist et al. (2010). In this work, the method has been extended to accommodate 
fully three-dimensional terrain and is now capable of running on highly parallelized machine ar-
chitectures. 

A key component of the immersed boundary method is the formulation of the forcing term 
used to impose the correct boundary condition at the immersed surface. Because the immersed 
surface is not coincident with the grid, an integral part of the immersed boundary algorithm is the 
interpolation method used in the calculation of the forcing term. In this work, we examine the 
use of two different interpolation methods. In the first interpolation method, which is trilinear, 
weighting coefficients are determined by inverting a Vandermonde matrix. This method is cho-
sen here because one or multi-dimensional linear interpolation methods were the first interpola-
tion methods to appear in the IBM literature, and are still commonly used. In the second interpo-
lation method, weighting coefficients are determined as a function of inverse radial distance. 
This method provides more flexibility in the choice of points influencing the interpolation be-
cause the Vandermonde matrix is eliminated, thereby eliminating the constraint that the matrix 
be well-conditioned. Each method is used in a simulation of flow over a three dimensional hill, 
and the results are compared to those using terrain-following coordinates. Additionally, results 
are presented for flow in downtown Oklahoma City. 

2 NUMERICAL METHOD 
2.1 Background on the immersed boundary method 
IBM is used to represent the effects of boundaries on a nonconforming structured grid. Boundary 
conditions are imposed with the addition of a body force term FB in the conservation equations 
for momentum and scalars (1). 

                      (1a) 
                         (1b) 

The body force term takes a zero value away from the boundaries, but modifies the governing 
equations in the vicinity of the boundary. Generally, IB methods include a determination of the 
forcing term, and an interpolation scheme to reconstruct the boundary condition on the immersed 
surface, which is not coincident with computational nodes. 

In this work, a method commonly referred to as direct or discrete forcing is used 
(Mohd_Yusof, 1997). With direct forcing, the velocity or scalar value is modified at forcing 
points near the boundary to enforce the boundary condition, eliminating the need for explicit cal-
culation of the body force term in the numerical algorithm. Within the direct forcing class of me-
thods, we have adopted an approach where forcing is applied at ghost cells, defined as the layer 
of computational nodes located just within the solid domain.   

The value of the variable at the ghost cell which will enforce either a Dirichlet (2a) or Neu-
mann (2b) boundary condition at the immersed surface Ω must be computed.   

                                     (2a) 
                                  (2b) 

Several different interpolation methods have been employed by researchers for the purpose of 
making this calculation, including multi-dimensional linear and quadratic interpolation (Tseng 
and Ferziger, 2003), inverse distance weighting (Gao et al., 2007), Lagrange, and least squares 
interpolations (Peller et al. 2006).  

We examine two interpolation schemes here, trilinear and inverse distance weighted interpola-
tions. In each case, the location of the ghost cell is reflected across the boundary, as in Figure 1, 
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and this is labeled as an image point. Next, one of the interpolation methods is applied to deter-
mine the value of the variable at the image point. Neighbors for the interpolation differ between 
the two methods, but can include both computational nodes and points on the boundary. The al-
gorithm for choosing the neighbors is described further sections 2.2 and 2.3, but in general, 
neighbors are determined by proximity to the image point. 

Once the value of the image point is calculated, it is used to find the value of the ghost point 
which enforces the boundary conditions. When a Dirichlet boundary condition is used, the ghost 
point is related to the image point value with . For a Neumann boundary condi-
tion the relationship is , where  is the distance between the ghost and im-
age points. 

2.2 Trilinear interpolation 
In trilinear interpolation the interpolant is the product of three linear functions, one in each di-
mension. The value of the image point is calculated using the interpolant given by equation (3). 

               (3) 
Eight neighboring points are used to define the interpolation region, and are chosen as either 
computational nodes or boundary points. An example of this is shown in figure 1. The constants 
c in the interpolant are determined by solving a linear system of equations (4) for each ghost 
point, where the rank is equal to the number of neighbors.  

                                    (4) 
The matrix A and the vector φ are dependent on the neighbors chosen for the interpolation and 
the type of boundary condition being imposed. For Dirichlet boundary conditions, equation (3) 
appears in the matrix equation. If the neighbor is a computational node, then φ takes the value 
calculated at the node. If the neighbor is a boundary point, then the boundary condition is as-
signed to φ. For Neumann boundary conditions, the gradient of the interpolation function is subs-
tituted into the boundary condition (2b), and equation (5) results. For neighbors on the boundary, 
equation (5) is used in (4). Once the interpolation constants are determined, the value of the im-
age point is found with equation (3). As a last step, the variable value at the ghost node is calcu-
lated and assigned. 

 (5) 

 
Figure 1. Ghost points are a layer of computational nodes just underneath the terrain. Here, a portion of terrain (the 

green surface) is shown with the computational cells that it cuts through. A ghost point is marked with a solid 
circle. An image point, marked with an open circle, is found by reflecting the ghost point across the terrain in the 
surface normal direction. A line connecting the ghost and image points is the surface normal. Eight neighbors 
marked by squares are chosen for use in determining the coefficients of the trilinear interpolant. In this case, six 
neighbors are computational nodes and two are located on the surface of the immersed boundary at the intersec-
tion of the boundary and one face of the cut cell. 
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2.3 Inverse distance weighted interpolation 
With the inverse distance weighted interpolation proposed in Franke (1982), the value of the im-
age point is calculated with the interpolant given by equation (6), which is simply a weighted av-
erage of the neighboring points.  

                                   (6) 
Any number of neighboring points can be used to define the interpolation region. Weighting 
coefficients c, given by equation (7), are a function of radial distance from the image point. In 
(7), Rmax is the maximum radius of the group of neighbors, and Rn and cn are the radial distance 
and weighing coefficient for the nth neighbor. 

                                 (7) 
This function produces an infinite weight for a node that is coincident with the image point, 
while the node located furthest away at Rmax has no influence with a weighing factor of zero. The 
variable p is a power function that controls the rate of decay of the weighting coefficient with in-
creasing radial distance. For the simulations presented here, p is set to one. 

In our algorithm, the first step in identifying neighbors is searching the 64 points surrounding 
the image point (i.e. a distance of 2 nodes in each direction which defines a 43 cloud of nodes 
surrounding the image point). Potential neighbors are identified as those residing in the fluid 
domain. These nodes are sorted by increasing radial distance, and eight neighbors are chosen by 
proximity.  

When Dirichlet boundary conditions are used, the first neighbor is on the immersed boundary 
along the surface normal vector connecting the image and ghost points. The remaining seven 
neighbors are computational nodes, as illustrated in figure 2a. Inverse distance weighting pre-
serves maxima and minima, even during extrapolation. Therefore, it is guaranteed that the inter-
polated image point value will be bounded by the values of the boundary condition and neigh-
boring computational nodes. 

                     

(a)                                    (b) 
Figure 2. Eight neighbors marked by squares are chosen for use in determining the coefficients of the inverse dis-

tance weighting interpolant. In (a) points are shown for a Dirichlet boundary condition, and in (b) points are 
shown for a Neumann boundary condition. 
 

 When Neumann boundary conditions are imposed, a boundary point is not used because the 
value on the surface is unknown. In this case, all eight neighbors are computational nodes. With-
out a point on the boundary, the image point can lie outside of the interpolation region, usually 
when the ghost node is near the surface as in figure 2. If extrapolation is used, the calculated val-
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ue of the image point may not properly account for gradients in the variable field because the 
extrapolated value is bounded by the values at the neighbors. In this case, the image point is 
modified by relocating it to be at the intersection of the surface normal with a face of the compu-
tational cut-cell, as shown in figure 2b. Although it is no longer a true image, the 
ship  can still be used to achieve the Neumann boundary condition.  

In either case (Dirichlet or Neumann), if eight neighbors are not available, the algorithm 
proceeds with fewer neighbors, using all available nodes within the search area that also reside in 
the fluid domain. As with trilinear interpolation, once the value at the image point is calculated, 
the last step is to enforce the boundary condition by calculating and assigning the ghost point 
value. 

3 VERIFICATION CASE 
 
In this section, we verify the implementation of our three-dimensional immersed boundary me-
thod in the WRF model, and evaluate the two interpolation methods. Verification is performed 
by simulating flow over a shallow three-dimensional hill with the native terrain-following coor-
dinates and with each of the immersed boundary methods, and comparing the results. 
 
3.1 Model Set-up and initialization 
The test flow case is start-up flow over a three-dimensional hill. The terrain height ht is defined 
by the Witch of Agnesi curve given in equation 8, using a peak height hp of 40 m and a mountain 
half-width a of 100 m.  

                                                     (8) 
The maximum slope of the terrain is 14.5 degrees. This slope is sufficiently shallow to allow for 
direct comparisons between simulations using terrain-following coordinates and those using the 
immersed boundary method. The flow is initialized with a neutral and quiescent sounding, and 
driven with a constant pressure gradient in the x direction. The number of grid points in each di-
rection is (nx,ny,nz) = (75,75,70) for the terrain-following cases, and (nx,ny,nz) = (75,75,80) for the 
immersed boundary method. Ten additional points are used in the vertical direction in the im-
mersed boundary method to account for the fact that nodes are needed underneath the terrain. In 
the horizontal dimensions, a constant 8 m grid spacing is used. In the vertical dimension, the grid 
points are equally spaced in WRF’s native pressure based coordinate η over the domain height of 
600 m. A constant eddy viscosity of 1 m2 s-1 is used. 
 Periodic boundary conditions are used at the lateral boundaries. A no-slip boundary condition 
is set on velocity at the terrain surface, along with a zero flux condition on temperature. At the 
top of the domain, the native WRF boundary condition is used (isobaric and a material surface), 
with a Rayleigh damping layer that acts only on vertical velocity at the top 100 m. 

3.2 Results for flow over a three dimensional hill 
The flow is integrated for 2 hours, and profiles of each velocity are shown in figure 3 for several 
locations along the x dimension for a slice of data in y that is just slightly off-center in the do-
main. It can be seen that the three profiles (two for IBM and one for terrain-following coordi-
nates) are nearly indistinguishable.  IBM results, represented by the blue and green lines extend 
below the terrain, where as the results using terrain-following coordinates represented by the red 
line end just above the terrain.  
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Figure 3. Profiles of u, v, and w velocity are shown for several horizontal locations located along a slice in the y di-

mension. The lines are nearly indistinguishable. The blue line represents trilinear interpolation, the green line 
represents inverse distance weighing, and the red line represents terrain-following coordinates.  

4 FLOW IN URBAN ENVIRONMENTS 

The Joint Urban 2003 field campaign took place in Oklahoma City over a period of one month, 
and is detailed in Allwine and Flaherty (2006). Over 20 institutions participated in the study, 
providing an extensive data set of urban atmospheric flow and dispersion. During the campaign, 
the city was instrumented with lidars, sodars, radars, sonic anemometers, airplane-based meteo-
rological sensors, fast-response tracer analyzers, and helicopter based remote tracer detectors. 
This data provides an excellent test case for verifying the use of IBM in a numerical weather 
prediction model. In preparation for simulating IOPs from this field campaign, we have modeled 
flow over a portion of Oklahoma City using an idealized model set-up. 
 
4.1 Model Set-up and initialization 
The set-up used in this simulation is similar to that described in section 3.1. A two-dimensional 
array of terrain data for the Oklahoma City case is created by overlaying the horizontal WRF 
grid with an ESRI shapefile of the downtown region, and sampling the building heights that are 
coincident with the nodes on the WRF grid. The shapefile data and resulting three-dimensional 
terrain are shown in figure 4.   

At initialization the atmosphere is neutral and at rest. Flow is driven with a constant pressure 
gradient in the y direction, and periodic lateral boundary conditions are used. The number of grid 
points in each direction is (nx,ny,nz) = (260,320,170). In the horizontal directions, a constant 2 m 
grid spacing is used. In the vertical dimension, the grid points are equally spaced in the η pres-
sure coordinate over the domain height of 425 m. The standard Smagorinsky turbulence model in 
the WRF distribution is used. 

4.2 Results for flow through urban terrain 
Figure 5 shows side and top contours of velocity magnitude with velocity direction indicated by 
arrows one hour after initialization. The primary flow direction is along the positive y axis. Many 
flow features are present in the simulation, including high speed jets at contractions of urban 
canyons and separation zones behind buildings. 

This case was simulated using the inverse distance weighting core of the immersed boundary 
method. We were unable to successfully use trilinear interpolation with this terrain data. Com-
mon problems were the inability to find eight appropriate neighbors and ill-conditioned Vander-
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monde matrices. Additionally, in some cases (such as at corners) the direction of the flux boun-
dary condition is ambiguous or prescribed in an unintended direction. 

 
            (a)                                      (b) 

Figure 4. (a) ERSI shapefile data for the buildings included in the Oklahoma City domain. (b) A two-dimensional 
array of terrain heights sampled from the ERSI shapefile is used to define the terrain used in the WRF simula-
tion. 

 
Figure 5. Contours are shown for velocity magnitude and quivers indicate direction. A side profile is show on the 

left, and the location in y is marked by a horizontal line placed in the top view on the right. Likewise, contours of 
velocity through a horizontal plane are shown as a top view on the right. The location of the horizontal plane is 
marked with a line through the side profile on the left.  

5 CONCLUDING REMARKS 

We have developed an IB method for the WRF model which is capable of handling highly com-
plex urban terrain, as demonstrated by our idealized Oklahoma City test case. We extended the 
two-dimensional IB method presented in Lundquist et al. (2010) into three dimensions, and vali-
dated the implementation by simulating flow over a hill and comparing the solution to results 
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achieved using the native terrain-following coordinate. We found that while the trilinear interpo-
lation algorithm provided accurate results for flow over a smooth hill, the algorithm was not ro-
bust enough to be used with real urban terrain. An alternate inverse distance weighted interpola-
tion method, which provided additional flexibility, was implemented and was also shown to 
produce accurate results for the hill test case. Additionally, the method proved to be robust 
enough to allow simulations of flow over real urban terrain data.  

Additional work is in progress to enable comparisons with the Joint Urban 2003 field cam-
paign. The work presented here uses idealized periodic lateral boundary conditions which do not 
represent real meteorological data. Better choices for the lateral boundary conditions would be to 
either specify the inlet flow with data from a fully developed neutral boundary layer simulation 
or to use WRF’s nesting capabilities to provide lateral boundary conditions from a mesoscale si-
mulation. Resolution of this issue will allow us to seamlessly integrate the IBM method into the 
current WRF framework, enabling simulation of a wide variety of cases with steep terrain.  
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